martes, 16 de junio de 2020

Criterios de Congruencia de Triángulos

Criterios de congruencia de Triángulos


Son postulados que permiten establecer si dos triángulos son congruentes a partir de algunas de las medidas de sus lados o sus ángulos.


1. Criterio: Lado - Lado - Lado (LLL)

Dos triángulos son congruentes si tienen sus tres lados congruentes.
Criterio Lado - Lado - Lado


2. Criterio: Lado - Ángulo - Lado (LAL)

Dos triángulos son congruentes si sus dos lados y el ángulo comprendido entre ellos son congruentes.

Criterio Lado - Angulo - Lado


3. Criterio: Ángulo - Lado - Ángulo (ALA)

Dos triángulos son congruentes si sus dos ángulos y el lado común son  congruentes.

Criterio Angulo - Lado - Angulo


Ejemplo 1

En la Figura 1 se observa la ubicación de una antena.

Figura 1
Figura 1


En los puntos A, B, C y D se encuentran algunas personas que reciben la señal con la misma intensidad. ¿Por qué sucede esto?

Los triángulos ∆ABT ∆DCT determinados en la Figura 1 son congruentes por el criterio LAL. Observa la Figura 2.

Figura 2

Resultado ejemplo 1


Ejemplo 2

Observa la Figura 3 y comprueba que el triángulo ABC es congruente con el triángulo DEF.

Figura 3
Figura 3

ejemplo congruencia

No hay comentarios:

Publicar un comentario